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1. The problem. The phenomenology of living systems (i.e., their relation to
the physical world) does not yet have a satisfactory theory. This is not just a philo-
sophical issue. In order to emulate the skill and subtlety of biological computation in
our own machines and systems, we need to understand what are the means by which
such veridicality is obtained.

Any person is capable of amazing feats of computational accuracy for which cur-
rent biological accounts are completely inadequate. To awake at a set hour without
external clues, to catch a ball hit to some distant point in space (running on dead-
reckoning to the exact spot), to execute complex choreography ending exactly with
the music (even when that music has only been heard a few times), to measure out
in a glance exactly one kilo of coffee beans, these aspects of exquisite control seem to
require explanation that is principled and coherent.

I believe that mathematical principles play a role in all biological computation,
and that a formal categorical substrate underlies the messy ad hoc networks of living
systems. Whether or not such a platonic (or really Leibnizian) view is found to hold
in nature, it could be helpful for our emulations.

In the remainder of this paper, we sketch some arguments and history for the
use of categories in biology in section 2. The origin of weak adjointness (in algebraic
topology) is discussed in section 3, while in section 4, the precise definition is given.
Finally, the last section considers applications to our basic problem.

2. Why categories?. The primal attraction of categories is that they allow all
different mathematical viewpoints to be represented. Also, category theory is “verti-
cally” organized (as with organic tissue). For example, one has the hierarchy: object,
morphism, category, functor, natural transformation, adjointness, monad, higher-
order categories, ..., while in, e.g., functional analysis one has only points, sequences,
norms, and spaces. Moreover, categorical entities are subject to a constant process of
enrichment, which bears a certain resemblance to evolution.

Such categorical points-of-view have been proposed by Robert Rosen [28], [29]
and by René Thom [31]. This is similar to categorical approaches to systems theory
(e.g., [1]) and is compatible with the views of Whitehead and Bertalanffy of events as
a complex network of interactions (like diagrams in categories).

An independent approach to theoretical biology via category theory was proposed
by the author in [17] and [18] which is based on the idea that perception and action
can be viewed as adjoint functors.

Our original proposal of coherent mechanisms for action and perception by biolog-
ical entities aimed at accounting for such phenomena as visual Gestalts and synergies
of neuromuscular coordination. In the present work, we consider a generalized con-
cept where the (weak) right adjoint functor is allowed to be multivalued on morphisms
and the bijection is only a surjection. We also require that the composition of action
followed by perception is the identity.

The concept of adjointness has been applied to situations arising in systems the-
ory, logic, and language by several people. The model of left/right adjoint functors for
syntax vs. semantics goes back to Lawvere’s seminal paper [22]. Minimal realization
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vs. behavior as a left/right adjoint pair was considered by Goguen [11], [12] and is
cited in Mac Lane [24, p. 87]. More recently, the weak adjointness considered below
was applied to typed graphs by Banach and Coradini [6]. Arbib and Manes [1] have
an interesting interpretation of adjointness in terms of the reversal of time.

For additional work on applications of category theory to systems and biology, see
also [10], [4], [13], [20], [21], and [25]. Ehresmann and Vanbremeersch [8], in a series
of papers, have substantially enlarged the categorical framework with a detailed and
interesting model of how temporal difference play a key role in biological systems; see,
e.g., [9].

Zeeman [33] used homology as a rough model of visual perception. In [14] the
author generalized adjointness so that homology has a “weak” right adjoint.

3. Origin in algebraic topology. To solve problems regarding generalized ho-
mology theory and the realization of commutative diagrams [15], [16], we introduced
weak adjointness [14]. As an example, for fixed positive integer n the Eilenberg-Mac
Lane space K(G,n) which is the space with a single non-vanishing homotopy group
G in dimension n [30, p. 424] is a weak right adjoint to n-dimensional homology.

The universal coefficient theorem of algebraic topology states that there is a
natural short exact sequence, ending in an epimorphism from H™(X;G), the n-th
cohomology group with coefficients in G, to hom(H,,(X),G) [30, p. 243]. But there
is a natural equivalence of bifunctors [30, p. 428]

X, K(G,n)] — H"(X;G)

Putting them together one obtains a natural epimorphism

[X, K(G,n)] = hom(H,(X),G)

which sends any homotopy class [f] to f, the induced map in homology. This is an
example of a weak adjointness which fits Mac Lane’s “right adjoint, right inverse”
situation [24, p. 129]; the composition H, o K(—,n) is the identity on abelian groups.

4. Weak adjointness. The following development is from Kainen [14] where
the notion of weak right adjoint was defined. A related notion appears in Maranda
[26]. Seely also uses the term “weak adjointness” [27] but not in a related sense. Our
notion of weak adjointness is to ordinary adjointness as a weak initial object is to an
ordinary initial object - there is a factorization but it need not be unique.

Let B,C be a pair of small categories. Given a functor N : C — B and a function
X from Ob(B) — Ob(C), there is a weak right adjunction ¢ from X to N if for all
object pairs C, B, there are surjections

(,25073 . C(C, XB) — B(NC,B)

which are natural in the sense that for every v : €' — C, the following diagram
commutes (where h# and h, resp., mean precomposition and postcompositon by k).
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oc,B
_—

C(C,XB) B(NC,B)

v# (N~)#

c(C',XB) $o.8 B(NC',B)

A quasifunctor [14] G : B — C is a pair of functions Gy, G; with Gy : Ob(B) —
Ob(C) and G is a function from morphisms in B to nonempty subsets of morphisms
in C between the corresponding objects such that the two obvious properties hold with
respect to composition. Namely, if & : B” — B’ and ¢ : B’ — B, then for all y € G1(c)
and all k € G1(k), vx € G1(ck) (the composition property) and 1g, ) € G1(1¢).

If there is a weak right adjoint from an object function Gy to a functor F', then
there is a unique maximal extension of Gy to a quasi-functor. For every §: B — B/,
let G1(8) consist of the family of all morphisms v : Go(B) — Go(B’) such that the
following diagram commutes:

oc.B
—

C(C,Go(B)) B(FC, B)

Vi By

c(c.Go(B) 2% B(FC. B
Then G is the required extension of Gy to a quasi-functor. This idea is used in
Mac Lane as well [24, p. 81, Thm 2 (ii)], but there the quasi-functor is an actual
functor since, for ordinary adjointness, there is a unique arrow which makes the square
commute. But in the case of weak adjointness, as noted in [26], [14], a natural
epimorphism is sufficient to guarantee a nonempty set of morphisms and, hence, to
define a quasi-functor.

5. Application to perception and action. Let B and C denote small cate-
gories, and assume we are given a functor N : C — B. Suppose C has coproducts
and N preserves them. Moreover, let us further assume that the following “solution
set” condition holds: For each B in Ob(B) there exists Sol(B) C Ob(C) such that if
B : NC — B, then 8 = vo N(a), where o : C — C’ for some C’ € Sol(B) and
~v: NC" — B. Then by Theorem 2.1 of [14] there is a weak right adjoint X to N.

We shall assume that these conditions do hold, thinking of IV as the endogenous
functor (corresponding to perception) and X as exogenous (corresponding to action).
Since X is only a quasi-functor, it is multi-valued on morphisms. We interpret this
as a non-uniqueness for biological action.

Finally, we also assume that NX = 1, which implies N is full and X is faithful.

A Gestalt is the holistic perception of a complex visual relationship as in the
sudden realization that a low-resolution black-and-white image represents a Dalmatian
dog in dappled shade. Dual to this is the notion of synergy (Bernstein [5]) which refers
to a complex neuromuscular act involving the simultaneous modulation of muscle
tension and joint-angles in order to carry out a physiological task - as in reaching for
and grasping a glass of water or signing one’s name.
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If N is perception, then one may regard the preservation of colimits as the an-
ticipation of consequences - cf. [8], [7]. We proposed that Gestalts amount to the
formation of colimits [17] and, in [18], that the formation of synergies is a limit pro-
cess.

In [14], we showed that if N preserves weak colimits, then the natural epimorphism
¢c.p:C(C,XB) — B(NC, B) induces an epimorphism

s.B [5,XB] — [Né,B],

where [,] denotes the family of natural transformations from one diagram to another,
both on the same underlying scheme, where in this case the second diagram is the
constant diagram, provided that the diagram ¢ has a weak colimit. We interpret this
as showing that for any such physical diagram 0 and any biological “goal” B, the
diagram is related to the corresponding action X B in such a way that the perceived
diagram relates to the goal.

If the diagram is suitably restricted (e.g., to a family of arrows with a common
target), then a dual result holds: Given any diagram ¢ in B, a physical object C,
and a natural transformation from the constant diagram NC to §, there is a natural
transformation from C to any of the realizations of X § (i.e., any selection of morphisms
from the nonempty sets to form a diagram in C) which corresponds to it under ¢. That
is, there is an epimorphism

¢cs : [C, X0 — [NC, 0],

which we interpret as the realization of intent by action.

Lawvere [23] and Tierney [32] have considered the application of categories to
physics, where they have used the notion of topos. Using enriched categories and
extending strict adjointness from a physical context, we hope for a synthesis with
their approach in future work.

In addition, some interesting questions arise in regard to diagram realization when
the categories are groupoids (i.e., every morphism is invertible); see [19]. This would
correspond to a substrate (quantum?) where the elementary operations are invertible.
Non-uniqueness of the weak adjoints could then arise through the failure of coherence
in the quantum computation.
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